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Talk Layout

e Focus: why around-the-globe UV-optical wide-field are
Important

e Goal: comparing observations with theory
o UV-optical surveys
o High cadence

e Our facilities



Why multi-wavelength?

e Goal: compare theory and observations (robust!)
e Bolometric LC & T evolution (less uncertainty)
e Examples - for what can we do:
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Why UV? Transients

e Transients (explosions) starts:

o Optically thick

o Hot
e A robust way to compare theory with observations:

o Bolometric LC [UV important at early time]

o Temperature evolution [UV important when T>20,000K]
e UV observations (and search) are important



Why UV? NS mergers

e UV bright at early times (<1 day)

e Bol. LC not consistent with a single velocity
components - solutions:
o Add more components with different opacities
o Use ejecta with velocity distribution (e.g., Waxman+18)



What is needed?

Surveys with high grasp

IR to UV

UV evolves fast

High cadence(!)

o Unexplored

o Followup limited

Sky accessibility (space and/or around the globe)



Space observatories solutions: ULTRASAT, UVEX, STAR-X

ULTRASAT (PI: Waxman)

Launch: 2025

33 cm, 200 deg? UV telescope

Geo orbit

o Continuous obs + download

o 50% of sky at any time + fast response

e ~8"PSF 22.4 magin 900s

e Additional missions:

o UVEX (2028) - 2 band + UV spectroscopy
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Multiple telescopes - more cost effective
Optimize the seeing: D>20 cm

For small telescopes -> small pixels: < 4 microns



Observatories solution: The Large Array Survey Telescope (LAST)

LAST (PI: Ofek & Ben-Ami)
Cost effective!

48, 28-cm tel.
Flexible operations
355 deg? FoV

21.0 mag in 400s
Under construction
48 tel. (end 2022)




UV is missing and important
Models: robust predictions regarding early UV emission
Impact: NS mergers, SNe, CSM SN, AGNs, TDE, stars
Observatories to fill the [UV + high cadence] gaps:

o ULTRASAT (2025) ol e
o LAST (2022)

o MAST (2024) Pls: Ben-Ami & Ofek
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e End



e Backup



Why UV? More

— ~

e CC SN shock cooling [see AGY talk]
o R* E/M ->The nature of progenitors
o CSM (wind breakout) 21
e AGN
o Var. higher in UV
o Look for power spectra break / mass of BH

22'000




Open Questions |

e How transients explodes - details are not clear:
o la explosion scenario?
o CC: Neutrino mechanism has difficulties
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Open Questions |l

100F

e Enigmatic transients
o Carich SNe
o SLSN |
o Some FBOTs
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LAST data rate challenge

e LAST node: 2.9 Gpix camera

e wW/20x20s exposures: data rate: 2.2 Gbit/s (x1.5 LSST
rate)

e A new efficient pipeline is required (Mostly done)

e Efficiency (high-level) examples:

O

O O O

Sources find/measure: x30 faster than SExtractor
FITS writing: x3 faster than CFITSIO
Astrometry: x300 faster



LAST data rate challenge

e LAST node: 2.9 Gpix camera

e wW/20x20s exposures: data rate: 2.2 Gbit/s (x1.5 LSST

rate)

e A new efficient pipeline is required (Mostly done)

e Main data products:

O

O

O

Individual calib. Images, masks, cat
Merged visits catalogs
Coadd images, masks, cat, PSF

, Reference, translient



LAST performances

e Astrometric precision: 30 (60) mas in 400 (20)s
e Cal. phot. ~1%
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LAST performances

e Astrometric precision: 30 (60) mas in 400 (20)s
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FiG. 7. The one-axis Declination rms of the relative astrometry
solution, measured over the 100 epochs of 20s exposures, vs. the
GAIA B, magnitude. The color represents single epochs (dark
blue; Binl), average over 4 epochs (blue; Bind), and average over
16 epochs (green; Binl6).
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F1G. 9. The rms of the relative photometry solution, measured
over 100 epochs, vs. the GAIA B, magnitude. The color represents
single epochs (dark blue; Binl), average over 4 epochs (blue; Bind),
and average over 16 epochs (green; Binl6). A 6 pixels radius aper-
ture photometry was used. The Black line shows the theoretical
noise curve for Binl, assuming no systematic.



